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Designing Diverse and Focused Combinatorial Libraries of Synthetic
Polymers

Charles H. Reynolds*

Rohm and Haas Company, 727 Norristown Road, Spring House, PennsylVania 19477-0904

ReceiVed February 12, 1999

Molecular topology and genetic algorithm optimized quantitative structure-property relationships (QSPR)
have been used to design diverse and focused libraries of synthetic biodegradable polymers. A diverse
subset (17 polymers) of a 112-member virtual polymer library was selected based on the molecular topology
of the repeat unit using a stochastic diversity method (SimSearch-SCA). These 17 polymers were shown to
be highly representative of the two-dimensional property space for the full library where the properties of
interest are glass transition temperature (Tg) and hydrophobicity as measured by the air-water contact
angle (CA). The 17 polymers in the diverse library were used to derive QSPR equations for Tg and CA by
using a genetic algorithm to select molecular topology descriptors for linear regression. High quality models
were derived for both Tg and CA. These QSPR models were tested by comparing the computed and
experimental Tg and CA values for the 95 polymers that werenot included in the training set. Representative
models giver2 values of 0.89 and 0.92 for Tg and CA, respectively. The QSPR models were further tested
by using them to build focused libraries with specific values of Tg and CA. The focused libraries were very
successful in identifying polymers that fall within specified ranges of Tg and CA. This work illustrates that
the same concepts of molecular similarity and diversity that have been exploited so effectively in the pursuit
of small biologically active molecules can also be employed in the design of synthetic polymers, particularly
in the context of parallel synthesis.

Introduction

The automated synthesis of libraries of small molecules
using combinations of synthetic building blocks has become
an important strategy for dramatically increasing the number
of compounds available for high throughput screening,
particularly in pharmaceuticals and agrochemicals.1,2 Despite
recent gains in the rapid synthesis and testing of new
compounds, it has become increasingly apparent that it is
still impossible to simply make everything. This realization
has led to greater use of rational approaches3-10 to design
combinatorial libraries for synthesis. The principal consid-
eration in designing compound libraries for synthesis is
whether the objective is a diverse library for screening or a
focused library for rapid synthesis of analogues. Libraries
may also be designed to fulfill other criteria such as ease of
synthesis or reagent efficiency.

In comparison to pharmaceuticals11 and agrochemicals,12

combinatorial approaches have only recently been applied
in the design of new materials.13,14 Examples of material
science problems that have been tackled using parallel
synthesis include catalysts,15-17 phosphors,18 superconduc-
tors,19 electronic materials,20-22 and polymers.23,24 In many
ways polymers would seem to be particularly amenable to
parallel synthesis given the wide variety of monomers that
can be readily combined into polymeric materials using a
small number of simple reactions. Recently, Brocchini et
al.23,24 have reported one of the first examples of parallel

synthesis of a small library of synthetic polymers using a
combinatorial approach. One might expect that as combi-
natorial approaches begin to be applied more widely to
polymer synthesis, or other materials for that matter, the need
for computational methods for library design will emerge
just as it has in pharmaceuticals and agrochemicals.

The objective of this study is to demonstrate that com-
putational tools can be used to design synthetic polymer
libraries for parallel synthesis using concepts now familiar
in the life sciences such as molecular diversity, similarity,
and quantitative structure-property relationships (QSPR).
The polymer library of Brocchini et al.23,24 was used to
explore the application of stochastic cluster analysis6 and
genetic algorithm driven QSPR25 to design diverse and
focused libraries of copolymers. Instead of biological activity,
the target properties are fundamental polymer properties such
as glass transition temperature (Tg) and hydrophobicity as
measured by the air-water contact angle (CA). Tg and CA
are both important properties for assessing the potential of
these polymers for use as degradable biomaterials. The
Brocchini et al.23,24polymer library presents an ideal test case
because it is a model of how combinatorial synthesis can be
applied to synthetic polymers and because experimental data
was reported for each member of the library.

Initially, I created a virtual library of the polymer repeat
units that included all members of the set resulting from
combination of two sets of monomers. This library was then
converted to 2-D topological descriptions and submitted to
analysis using the diversity algorithm in SimSearch6 in order* E-mail: Charles_Reynolds@rohmhaas.com.
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to identify a small subset of structurally diverse copolymers.
This subset of diverse copolymers was then used to derive
QSPR models for Tg and CA using genetic algorithm25 (GA)
selection of molecular descriptors. Once statistically signifi-
cant models were derived, these models were tested both by
predicting the properties of the rest of the polymer library
and by using the QSPR models to design focused polymer
libraries with specific combinations of properties (i.e. Tg and
CA).

Computational Procedure

The basic copolymer repeat unit is given in structures1a
and 1b. The Cerius226 version 3.8 modeling package was
used to enumerate a virtual library where R and Y are varied
systematically as given in Tables 1 and 2. The structures
are named using abbreviations suggested previously23 for the
diacid and diphenol monomers used to synthesize the
copolymer. For example, the product of glutaric acid and

the methyl-substituted diphenol (1a, R ) methyl, Y) C2H6)
is denoted GLA-DTM. The monomer reagents are given in
Tables 1 and 2 along with their abbreviations. The topology
descriptors used in subsequent diversity selection and model-
ing of the copolymers were derived from the polymer repeat
unit (1a, 1b) capped with hydrogens. To avoid the additional
complexity introduced by the conformational flexibility of
the repeat units, molecular descriptors were only selected if

they could be derived from the two-dimensional molecular
connectivity. Previous work indicates that two-dimensional
topology descriptors can be very useful in assessing molec-
ular similarity or diversity,27 and they can even be used to
develop predictive quantitative structure-activity models for
biological activity28,29 or material properties.30-32

The stochastic search method implemented in SimSearch6

was used to select a diverse subset of copolymer repeat units
from the virtual library. SimSearch uses topology descriptors
that are analogous to the topological torsion.33 Each descrip-
tor is divided into two parts: an atom type and topological
path. In our implementation the atom type is defined by the
element and the hybridization at that atom (e.g. C-sp2, O-sp3,
etc.). SimSearch breaks the hydrogen-suppressed path for a
given molecule into diads, triads, and tetrads (e.g. connected
paths of 2, 3, and 4) of atom types representing all connected
paths in the molecule. An example of this topology descriptor
is given in the Supporting Information. The search algorithm
for identifying diverse subsets of structural libraries uses a
random search of descriptor space with a hard similarity
cutoff for accepting compounds into the probe (diverse
compound) list. This procedure has been published sepa-
rately6 and is only outlined briefly in Figure 1.

The QSPR models developed in this study were derived
using the genetic algorithm25 driven linear regression method
in Cerius2. GA was used to guide variable selection for the
least-squares fit. In each case 100 equations were selected
randomly to begin the optimization. GA evolution was then
used to vary the descriptors and number of descriptors in

Table 1. Diphenol Monomer Structures

monomer repeat R monomer repeat R

DTM 1a methyl DTiP 1a i-propyl
DTE 1a ethyl DTiB 1a i-butyl
DTB 1a butyl DTsB 1a s-butyl
DTH 1a hexyl DTBn 1a benzylic
DTO 1a octyl HTE 1b ethyl
DTD 1a dodecyl HTH 1b hexyl
DTG 1a -C2H4OC2H4OC2H4- HTO 1b octyl

Table 2. Diacid Monomer Structures

monomer diacid Y

SCA succinic -C2H4-
GLA glutaric -C3H6-
DGA diglycolic -CH2OCH2-
AA adipic -C4H8-
MAA 3-methyl-adipic -CH2CH2CH(CH3)CH2-
SUA suberic -C6H12-
DDA dioxaoctane-dioic -CH2OCH2CH2OCH2-
SBA sebacic -C8H16-

Figure 1. Schematic representation of the dissimilarity step in the
stochastic cluster analysis algorithm implemented in SimSearch.
Sc is the similarity cutoff used for assessing diversity, C represents
any compound in the data set, and Si is the similarity score with
respect to one of the previous probes (Pi).
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the QSPR equation based on a lack-of-fit score.34 The lack-
of-fit metric in Cerius2 penalizes equations with poor sum-
of-squares errors and larger numbers of parameters. Thus
equations are favored that have maximalr2 values and a
minimal number of independent variables. In all cases at least
two independent GA optimizations were run for 5000-10000
crossovers each. Multiple runs ensured that the results were
converged and independent of the starting equations. I only
employed linear terms in this study even though the program
allows for quadratic and other nonlinear terms.

The topology descriptors used to derive the QSPR equa-
tions in this study include the standard Kier-Hall type
descriptors,35,36log P calculated using ACD Labs software,37

and other 2-D topology descriptors such as number of
rotatable bonds and the Wiener index.38 The complete set
of descriptors employed in the GA optimization is given in
the Supporting Information.

Selecting a Diverse Subset

A virtual library of 112 copolymers was generated based
on the copolymerization of 14 diphenols with 8 diacids as
described above (Tables 1, 2). The polymers in this library
were further converted to SimSearch topology descriptors
and submitted for diversity analysis using a similarity cutoff
of 0.95. A high similarity cutoff was necessary because a
significant portion of the polymer repeat units are conserved
across the polymer library. The diversity search at 0.95 led
to the selection of 17 polymers which are given in Table 3.
It should be noted that this selection was based solely on
the molecular structure and not any hypothetical model for
Tg or CA. To assess how well the sublibrary represents the
full polymer library with respect to Tg and CA, the
experimental 2-D descriptor space defined by Tg and CA
for all 112 copolymers is displayed graphically in Figure 2.
Each member of the polymer library is represented as a point
in Tg and CA space in Figure 2. The 17-member subset
selected using diversity analysis is highlighted (filled circles).
Visual inspection of Figure 2 shows that the sublibrary is
actually quite diverse and provides good coverage of the
experimental range of Tg and CA in the full library. The
only exceptions are AA-DTBn and AA-DTE that give nearly
identical Tg and CA values. However, the diversity algorithm
might be forgiven for selecting both of these polymers since
the side chains are quite different structurally with benzyl
and ethyl substituents, respectively.

QSPR Models

The subset of 17 diverse polymers selected above was used
to derive separate QSPR models for Tg and CA. These

polymers represent approximately 15% of the total library
for which experimental data are available. QSPR models
were derived for Tg and CA, with respect to only these 17
copolymers, using GA driven linear regression as described
above. As is typical, the GA optimization resulted in a
collection of equations correlating various topology descrip-
tors with the property of interest. Each GA generation
contained 100 equations, so the final generation contained
the most fit collection of 100 equations.

In the case of Tg, many equations were identified that had
high r2 values. A handful of descriptors such as number of
rotatable bonds, Kappa-2, and Wiener index were represented
repeatedly in these equations. To guard against overfitting
the relatively small subset of polymers, I restricted consid-
eration to equations containing three or fewer variables and
an intercept. The most efficient models with anr2 greater
than 0.90 found in both independent GA runs each use only
two descriptors. The descriptors found in these four models
include number of rotatable bonds, Kappa-3, Kappa-2,
Kappa-2-AM, and the Weiner index. Five representative
models are given in Table 4.

The r2 for the three-variable model, Tg-1, is 0.94. A plot
of the calculated versus experimental Tg values is given in
Figure 3. The data points used to derive this equation are
shown as filled circles. Figure 3 illustrates the excellent
correlation provided by this linear model, and further
underlines the value of using diversity criteria to define the

Table 3. Diverse Polymer Sublibrary

diacid diphenol Tg CA diacid diphenol Tg CA

SBA DTD 12 101.2 DDA DTD 17 94.4
DGA DTBn 76 71.1 DDA DTG 18 75.9
DGA DTE 79 67.3 SCA HTO 51 86.6
DGA DTO 40 86.6 DGA HTH 46 80.8
GLA DTO 32 85.7 AA HTE 65 71.4
AA DTBn 61 74.1 DDA HTE 50 67.7
AA DTE 61 73.0 DDA HTO 23 90.4
SUA DTG 6 85.7 SBA HTO 16 90.7
DDA DTB 45 75.2

Figure 2. Plot of the property space for Tg and contact angle.
The SimSearch selected subset is represented by filled circles. The
rest of the 112-polymer library is represented as open circles.

Figure 3. Calculated versus experimental Tg using model Tg-1.
Diverse subset is represented by filled circles.
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subset for modeling. The 17 copolymers give an evenly
distributed range of Tg values that span the full range. There
are four subset points clustered below a Tg of 20°C, but
those four points span a range of contact angles. A random
selection of only 17 copolymers would run a significant risk
of leaving part of the Tg range underrepresented. Figure 3
also shows that the Tg model derived from the subset of 17
copolymers is quite predictive for the other 95 copolymers
that were not used to determine the model. The RMS error
in calculated Tg for the full set is 7°C. Similar comparisons
of calculated and experimental Tg values show that the other
simpler two-variable models are also quite predictive for the
larger set of 112 polymers with the exception of equation
Tg-2 (Figure 4). Model Tg-2 gives very poor predictions
for all of the copolymers that involve the branched substit-
uents such as DTiB and DTiP. These monomers are not
represented in the subset of 17 copolymers and obviously
lie on a separate line in Figure 4 relative to the other
polymers. There is always a chance with any empirical model
that it will fail for structures that fall outside the training
set. In this regard, one advantage of the GA method is that
it creates a population of equations for selection, not just a
single equation. A plot of experimental versus calculated Tg
is given for the two-variable model (Tg-3) in Figure 5. This
represents an efficient model that is still very reasonable in
terms of its predictive power.

Since the number of rotatable bonds shows up repeatedly
in the GA optimization and a similar metric was proposed
by Brocchini et al., a model that includes only the number
of rotatable bonds is also given in Table 4. Even this simple
model, based on a single variable, is remarkably good giving
an r2 of 0.82 (Figure 6) for the training set. It is intuitively

reasonable that the Tg should be highly correlated with the
number of rotatable bonds. It is well known that more flexible
polymers tend to have lower glass transition temperatures.
Consequently, any addition of rotatable bonds in the polymer
backbone should lead to lower Tg values. In addition, longer
more extended side chains in the diphenol monomer (R)
should also lead to more rotatable bonds, greater free volume,
and lower Tg. It is most likely that the other topology
descriptors such as the Wiener index are capturing small
effects due to branching in the diphenol side chain.

Analogous to the Tg models above, GA optimization was
used to generate a set of equations for the air-water contact
angle (CA). Again, I restricted consideration to equations
containing three or fewer variables excluding the intercept.
Representative equations that satisfy this requirement are

Table 4. QSPR Models for Tg

intercept var1 var2 var3 r2 r2 (all)a
RMS (all)a

(°C)

Tg-1 202.588 -10.7389 (rot. bonds) +0.009741 (Wiener) +2.78809 (ACD logP) 0.94 0.89 7.1
Tg-2 181.365 -63.2841 (rot. bonds) +77.3128 (Kappa-3) 0.93 0.59 23.7
Tg-3 151.08 -41.9474 (rot. bonds) +44.8472 (Kappa-2-AM) 0.91 0.88 7.1
Tg-4 202.421 -10.6170 (rot. bonds) +0.011611 (Wiener) 0.91 0.87 7.4
Tg-5 278.436 -16.9746 (Kappa-2) +0.018791 (Wiener) 0.91 0.85 8.5
Tg-6 146.902 -4.67357 (rot. bonds) 0.82 0.83 8.3

a Error for the complete data set of 112 polymers using this model.

Figure 4. Calculated versus experimental Tg using model Tg-2.
Diverse subset is represented by filled circles.

Figure 5. Calculated versus experimental Tg using model Tg-3.
Diverse subset is represented by filled circles.

Figure 6. Calculated versus experimental Tg using model Tg-6
(number of rotatable bonds only). Diverse subset is represented by
filled circles.
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given in Table 5. In addition to ther2 for the 17 polymers
used in generating the model, ther2 is also given for each
model with respect to the full set of 112 polymers. Plots of
the experimental versus calculated CA for the first two
models, CA-1 and CA-2, are given in Figures 7 and 8,
respectively. The three-variable model (CA-1) is excellent
with an r2 for the full 112 polymers of 0.92, but the two-
variable model is only a little poorer with anr2 of 0.88
(Figure 8).

The first 14 equations in one GA run and first 17 equations
in the second GA run all contained ACD logP as an
independent variable. This would seem to indicate an
important role for this variable in modeling the contact angle.
Indeed, an equation using only the ACD logP gives a
respectable model withr2 ) 0.82 for the training set andr2

) 0.87 including the polymers withheld from the training
set (Table 5; Figure 9).

The models derived for both Tg and CA using the 17-
polymer subset are predictive over the entire library at a level
that would be very useful for polymer design. It might be
possible to derive even better models using descriptors that
have been designed more specifically for modeling polymers,
such as those proposed by Bicerano.39-41 For example,
Bicerano makes a distinction between rotatable bonds in the
polymer backbone and the side chain. This distinction might
improve the model reported here for Tg. However, given
the quality of the models derived from more standard
topological descriptors, there was little justification for
adopting more specialized descriptors.

Focused Library Design

The QSPR models can be used to assemble focused
libraries that have a specific combination of desired proper-
ties. For example, if one wanted a library of hydrophobic
polymers with low Tg, it would be possible to use the models
developed previously for Tg and CA to score a virtual library
of polymers and select only the polymers that are predicted
to have the desired blend of properties.

The QSPR models for Tg and CA (Tg-1 and CA-1) were
used to design two focused libraries: one (Focus1) with Tg
between 0 and 20°C and a contact angle between 80 and
100°, and a second (Focus2) with Tg between 60 and 80°C
and a contact angle between 60 and 80°. These libraries are
given in Table 6 and shown graphically in Figure 10.
Inspection of Figure 10 shows that the low Tg-high CA
library has one member that falls slightly outside the design
box and misses four compounds that fall within the design
box. However, the “hit rate” of 55% is quite reasonable for
a focused library. Further, if one wanted to be more certain
of finding all of the compounds in the library that satisfy
the design properties bounded by the box in the upper left

Table 5. QSPR Models for CA

eq intercept var1 var2 var3 r2 r2 (all)a
RMS (all)a

(deg)

CA-1 22.1744 +3.23187 (ACD logP) +4.13635 (Kappa-2-AM) -0.00534 (Wiener) 0.95 0.92 2.4
CA-2 58.2026 +7.64438 (CHI-V-1) -6.93161 (CHI-3 P) 0.89 0.88 3.0
CA-3 65.6838 +7.64479 (CHI-V-1) -1.75771 (SC-2) 0.89 0.88 2.9
CA-4 57.9674 +4.19735 (ACD logP) 0.82 0.87 3.0

a Error for the complete data set of 112 polymers using this model.

Figure 7. Calculated versus experimental CA using model CA-1.
Diverse subset is represented by filled circles.

Figure 8. Calculated versus experimental CA using model CA-2.
Diverse subset is represented by filled circles.

Figure 9. Calculated versus experimental CA using model CA-4.
Diverse subset is represented by filled circles.
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Table 6. Calculated and Experimental Results for Tg and Contact Angle

diacid diphenol Tg (expt),°C Tg-1,°C residual,°C CA (expt), deg CA-1, deg residual, deg focusa

SCA DTB 67 62.0 5.0 74.0 74.4 -0.4 2
SCA DTBn 78 77.7 0.3 72.6 70.3 2.3 2, 4
SCA DTD 40 26.2 13.8 96.1 94.7 1.4
SCA DTE 78 74.5 3.5 68.7 67.8 0.9 2, 4
SCA DTG 34 32.3 1.7 70.3 75.5 -5.2
SCA DTH 53 50.9 2.1 81.0 80.5 0.5
SCA DTM 91 81.2 9.8 66.4 64.2 2.2 4
SCA DTO 48 41.1 6.9 86.8 86.0 0.8
SCA DTiB 75 71.9 3.1 74.8 71.1 3.7 2, 4
SCA DTiP 82 78.0 4.0 70.7 67.9 2.8 2, 4
SCA DTsB 75 71.6 3.4 73.7 71.3 2.4 2, 4
SBA DTB 30 34.2 -4.2 83.6 85.9 -2.3
SBA DTBn 42 55.2 -13.2 80.7 78.1 2.6
SBA DTD 12 10.6 1.4 101.2 100.7 0.5 3
SBA DTE 44 44.3 -0.3 79.5 80.2 -0.7
SBA DTG 2 10.1 -8.1 86.0 84.5 1.5 1, 3
SBA DTH 20 25.8 -5.8 90.3 90.9 -0.6
SBA DTM 47 49.8 -2.8 77.3 77.1 0.2
SBA DTO 13 19.0 -6.0 94.6 95.0 -0.4 1, 3
SBA DTiB 33 44.1 -11.1 82.5 82.1 0.4
SBA DTiP 44 48.9 -4.9 81.4 79.5 1.9
SBA DTsB 36 43.8 -7.8 82.1 82.3 -0.2
DGA DTB 64 56.0 8.0 72.5 76.0 -3.5
DGA DTBn 76 72.4 3.6 71.1 71.3 -0.2 2, 4
DGA DTD 36 22.0 14.0 97.5 95.5 2.0
DGA DTE 79 68.1 10.9 67.3 69.5 -2.2 2, 4
DGA DTG 27 27.1 -0.1 70.1 76.7 -6.6
DGA DTH 45 45.2 -0.2 80.5 82.0 -1.5
DGA DTM 82 74.6 7.4 64.2 66.0 -1.8 2, 4
DGA DTO 40 35.9 4.1 86.6 87.2 -0.6
DGA DTiB 72 65.9 6.1 73.9 72.6 1.3 2, 4
DGA DTiP 80 71.8 8.2 67.9 69.5 -1.6 2, 4
DGA DTsB 68 65.6 2.4 73.1 72.8 0.3 2, 4
GLA DTB 55 56.0 -1.0 74.9 76.2 -1.3
GLA DTBn 66 72.5 -6.5 73.8 71.5 2.3 2, 4
GLA DTD 28 22.0 6.0 95.6 95.7 -0.1
GLA DTE 69 68.1 0.9 69.0 69.6 -0.6 2, 4
GLA DTG 21 27.1 -6.1 75.6 76.9 -1.3
GLA DTH 43 45.3 -2.3 79.9 82.1 -2.2
GLA DTM 76 74.7 1.3 67.2 66.2 1.0 2, 4
GLA DTO 32 36.0 -4.0 85.7 87.4 -1.7
GLA DTiB 62 65.9 -3.9 76.3 72.8 3.5 2, 4
GLA DTiP 68 71.8 -3.8 71.8 69.7 2.1 2, 4
GLA DTsB 58 65.6 -7.6 74.0 72.9 1.1 2, 4
AA DTB 46 50.6 -4.6 77.6 78.1 -0.5
AA DTBn 61 67.9 -6.9 74.1 72.8 1.3 2, 4
AA DTD 22 18.5 3.5 96.7 96.7 -0.0 1, 3
AA DTE 61 62.3 -1.3 73.0 71.7 1.3 2, 4
AA DTG 15 22.6 -7.6 79.1 78.4 0.7 3
AA DTH 38 40.3 -2.3 83.7 83.8 -0.1
AA DTM 69 68.7 0.3 70.7 68.2 2.5 2, 4
AA DTO 28 31.4 -3.4 87.3 88.9 -1.6 3
AA DTiB 56 60.5 -4.5 76.9 74.6 2.3 2, 4
AA DTiP 58 66.2 -8.2 73.5 71.5 2.0 2, 4
AA DTsB 50 60.2 -10.2 75.9 74.8 1.1 2, 4
MAA DTB 45 54.9 -9.9 78.7 77.6 1.1
MAA DTBn 60 72.9 -12.9 75.3 72.1 3.2 2, 4
MAA DTD 19 24.4 -5.4 94.0 95.0 -1.0
MAA DTE 63 66.4 -3.4 75.3 71.5 3.8 2, 4
MAA DTG 16 27.7 -11.7 78.6 77.3 1.3
MAA DTH 33 44.9 -11.9 83.8 83.1 0.7
MAA DTM 68 72.6 -4.6 77.5 68.2 9.3 2, 4
MAA DTO 30 36.5 -6.5 86.3 87.8 -1.5
MAA DTiB 47 64.8 -17.8 76.8 74.2 2.6 2, 4
MAA DTiP 54 70.4 -16.4 75.3 71.3 4.0 2, 4
MAA DTsB 56 64.5 -8.5 76.4 74.4 2.0 2, 4
SUA DTB 37 41.3 -4.3 81.3 81.9 -0.6
SUA DTBn 47 60.3 -13.3 77.1 75.3 1.8 2
SUA DTD 15 13.2 1.8 95.5 98.7 -3.2 1, 3
SUA DTE 50 52.2 -2.2 75.9 75.8 0.1

302 Journal of Combinatorial Chemistry, 1999, Vol. 1, No. 4 Reynolds



corner of Figure 10, one could loosen the selection criteria
to include calculated values slightly outside the box. In the
case of the low Tg-high CA library one would only need

to increase the Tg cutoff from 20 to 24°C in order to capture
all of the polymers satisfying the target specifications.

Another way to measure the success of this focused library
is to compute the number of “hits” identified for a given
number of polymers synthesized and tested. For the low Tg-
high CA focused library, 25 polymers (17 in the screening
library + 8 in the focused library) nets five “hits”. By
comparison, random testing of 25 polymers from the full
library of 112 possible polymers would only be expected to
net two “hits” based on the incidence of polymers in the
full library that satisfy both the Tg and CA restraints. Thus,
using the screen and focus strategy provides more than twice
as many polymers that satisfy our performance goals relative
to random screening. Further, the strategy outlined above is
likely to be much less variable than random screening where
one might get lucky and find many polymers that satisfy
the design criteria or, if less fortunate, find no polymers
meeting the design criteria at all.

A second focused library (Focus2) was designed using
the criteria of Tg between 60 and 80°C and CA between

Table 6. Continued

diacid diphenol Tg (expt),°C Tg-1,°C residual,°C CA (expt), deg CA-1, deg residual, deg focusa

SUA DTG 6 15.1 -9.1 85.7 81.4 4.3 1, 3
SUA DTH 27 31.8 -4.8 84.4 87.3 -2.9
SUA DTM 55 58.1 -3.1 74.1 72.5 1.6
SUA DTO 21 24.0 -3.0 88.1 91.9 -3.8 3
SUA DTiB 42 51.1 -9.1 79.7 78.2 1.5
SUA DTiP 46 56.4 -10.4 77.0 75.3 1.7
SUA DTsB 46 50.8 -4.8 78.7 78.4 0.3
DDA DTB 45 38.5 6.5 75.2 78.4 -3.2
DDA DTBn 55 57.5 -2.5 71.1 71.9 -0.8
DDA DTD 17 10.5 6.5 94.4 95.2 -0.8 3
DDA DTE 53 49.4 3.6 68.5 72.3 -3.8
DDA DTG 18 12.4 5.6 75.9 77.9 -2.0 1, 3
DDA DTH 28 29.1 -1.1 81.0 83.8 -2.8
DDA DTM 63 55.4 7.6 64.6 69.0 -4.4
DDA DTO 16 21.2 -5.2 88.1 88.4 -0.3 3
DDA DTiB 50 48.4 1.6 73.7 74.8 -1.1
DDA DTiP 58 53.7 4.3 69.6 71.9 -2.3
DDA DTsB 44 48.1 -4.1 73.5 74.9 -1.4
SCA1 DTE 73 80.8 -7.8 68.1 65.4 2.7 2
SCA1 DTH 59 56.5 2.5 81.8 78.4 3.4
SCA1 DTO 51 46.4 4.6 86.6 84.0 2.6
DGA1 DTE 66 74.2 -8.2 66.3 67.2 -0.9 2
DGA1 DTH 46 50.7 -4.7 80.8 79.9 0.9
DGA1 DTO 51 41.0 10.0 86.9 85.4 1.5
AA1 DTE 65 68.2 -3.2 71.4 69.5 1.9 2
AA1 DTH 32 45.5 -13.5 84.2 81.9 2.3
AA1 DTO 28 36.3 -8.3 89.9 87.1 2.8
MAA1 DTE 63 72.0 -9.0 72.7 69.5 3.2 2
MAA1 DTH 38 50.0 -12.0 82.9 81.3 1.6
MAA1 DTO 30 41.1 -11.1 88.4 86.2 2.2
SUA1 DTE 54 57.5 -3.5 74.8 73.8 1.0
SUA1 DTH 27 36.6 -9.6 85.6 85.6 0.0
SUA1 DTO 22 28.3 -6.3 89.5 90.3 -0.8
DDA1 DTE 50 54.8 -4.8 67.7 70.4 -2.7
DDA1 DTH 31 33.8 -2.8 83.1 82.1 1.0
DDA1 DTO 23 25.5 -2.5 90.4 86.9 3.5
SBA1 DTE 43 49.1 -6.1 77.0 78.5 -1.5
SBA1 DTH 23 30.0 -7.0 86.6 89.4 -2.8
SBA1 DTO 16 22.8 -6.8 90.7 93.7 -3.0
GLA1 DTE 65 74.2 -9.2 70.7 67.4 3.3 2
GLA1 DTH 42 50.7 -8.7 83.3 80.1 3.2
GLA1 DTO 38 41.0 -3.0 87.7 85.5 2.2

RMS error 7 2
a Member of a focused library, e.g. 1 refers toFocus1.

Figure 10. Map of Tg and CA property space. Two focused
libraries are shown. The filled squares (Focus1) are a library focused
on Tg between 0 and 20°C and CA between 80 and 100° (low
Tg-high CA). The filled circles (Focus2) are a library focused on
Tg between 60 and 80°C and CA between 60 and 80° (high Tg-
low CA).
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60 and 80°. This second high Tg-low CA library is shown
as filled circles in Figure 10. In this case 26 of 28 compounds
that satisfy this set of criteria were correctly identified using
the QSPR equations to design the focused library. This
amounts to a “hit rate” of 93%. This focused library also
contains seven polymers that fall outside the defined property
box, but only two of these are any significant distance from
the desired range. In both cases the Tg values are poorly
predicted.

Once again, it is useful to ask how well the screen and
focus approach performs relative to random testing. In this
case the screen and focus protocol would lead to synthesis
and testing of 43 polymers (17 in the screening library+ 8
in the focused library). This testing protocol provides 26
polymers with the desired Tg and CA values. By comparison
random selection should net 13 polymers on average that
have the desired properties. As was true with the first set of
design criteria, the high Tg-low CA focused library provides
approximately twice as many polymers meeting the design
criteria as a random search even when the cost of making
and testing the initial screening library is included. Of course,
one could select any combination of Tg and CA for a focused
library using the QSPR equations given in Tables 4 and 5.
The two examples given here were simply chosen to illustrate
the value of QSPR in designing focused polymer libraries.

Many times a significant issue when designing focused,
or diverse, libraries is reagent efficiency.42 Simply identifying
the “best” compounds for synthesis, sometimes referred to
as “cherry picking”, may result in a library that is awkward
to synthesize automatically and that is inefficient with respect
to reagents. If reagent efficiency were a concern in this case,
one could easily design alternative libraries where the
monomers are input in row and column format. For example,
in the first focused library (low Tg, high CA), one might
simply select all reagents that lead to products in the selected
subset (Focus1) and assemble a fully enumerated library
based on these reagents (Focus3). This design (Table 7)
doubles the number of polymers synthesized from 6 to 12,
but leads to a filled block design and provides three additional
hits. It actually provides five additional hits if one allows
just (1 °C of latitude in defining a hit. This library spans
Tg and CA ranges of 2-28 °C and 76-101°, respectively.
The largest deviation for a target property is 8°C for Tg.
This library is represented by filled squares in Figure 11.

In the case of the high Tg-low CA library (Focus2), there
is a clear dichotomy between monomers that only appear
once in the library and monomers that are present an average
of six times in the library (Table 8). A second more efficient

high Tg-low CA library was designed (Focus4) using only
the monomers that occurred in more than one polymer in
the initial library (Focus2). This leads to a block design
library of 30 polymers derived from five diacids and six
diphenols. This library is actually slightly smaller than
Focus2, but maintains an impressive hit rate with only nine
polymers falling outside the desired range. As was true for
Focus2, Focus4falls entirely within the CA range, but with
Tg values ranging from 47 to 91°C, this library contains
one polymer that falls 13°C outside the desired range. This
library is given as filled circles in Figure 11. Comparison of
Figures 10 and 11 show that the focused libraries are of
comparable quality regardless of whether they are selected
purely based on the calculated properties of the product
polymer (Focus1, Focus2) or if the libraries are recast so as
to provide more experimentally efficient libraries (Focus3,
Focus4) where the monomers are combined using a row and
column format.

Conclusion

The same concepts of molecular similarity and diversity
that have proven useful in the design of biologically active
small molecules can also be applied in the design of synthetic
polymers. Molecular topology descriptors and a stochastic
diversity algorithm have been used to select a screening
library of 17 polymers from a virtual library of 112
condensation polymers. Experimental data for the glass

Table 7. Properties (°C) of Two Focused Libraries for Low
Tg and High CA (Focus1, Focus3)a

DTG DTD DTO

Tg CA Tg CA Tg CA

SBA 2 86 12 101 13 95
DDA 18 76 17 94 16 88
SUA 6 86 15 96 21 88
AA 15 79 22 97 28 87

a Polymer compositions from libraryFocus1 are enclosed in
boxes. Other polymers are additions to fill outFocus3.

Figure 11. Map of Tg and CA property space. The reagent efficient
focused libraries are shown. The filled squares (Focus3) are a library
focused on Tg between 0 and 20°C and CA between 80 and 100°
(low Tg-high CA). The filled circles (Focus4) are a library focused
on Tg between 60 and 80°C and CA between 60 and 80° (high
Tg-low CA). These libraries are comparable in quality to the
“cherry picking” libraries in Figure 10.

Table 8. Incidence of Monomers Incorporated into the High
Tg-Low CA Library (Focus2)a

diacid incidence diphenol incidence

DGA 7 DTE 10
SCA 7 DTBn 6
AA 6 DTiB 5
GLA 6 DTiP 5
MAA 6 DTsB 5

DTM 5
AA1, DGA1, GLA1,

MAA1, SCA1, SUA
1 DTB 1

a Focus4is the complete 5× 6 library of diacids DGA, SCA,
AA, GLA, and MAA combined with the diphenols DTE, DTBn,
DTiB, DTiP, DTsB, and DTM.
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transition temperature (Tg) and air-water contact angle (CA)
for these 17 polymers have been used as a training set to
derive a series of QSPR models for Tg and CA. These QSPR
models have subsequently been used to calculate Tg and CA
for the remaining polymers in the full virtual library.
Comparison of the computed and experimental data show
good agreement even for polymers that were withheld from
the training set. Further, the QSPR models have been used
to design focused libraries with specific target ranges of Tg
and CA. It has been demonstrated that this screen and focus
strategy is very effective for identifying polymers that fall
in a specific range of Tg and CA. This general strategy
should have widespread value as combinatorial design and
synthesis are applied to the development of new synthetic
polymers and materials.
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